Joint Distributions for Continuous Variables

 

An example for finding marginal PDF of two random variables given the joint probability density function

Example

  • A certain factory produces two kinds of products on any given day; widgets and gizmos.
  • Let these two kinds of products be represented by the random variables X and Y respectively.
  • Given that the joint probability density function of these variables is given by
\[f(x,y)= \begin{cases} \frac{2}{3}(x+2y)& 0 \le x \le1,0 \le y \le 1 \\ 0& \text{elsewhere} \end{cases}\]

Questions

  • Find the marginal PDF of X
\[\begin{eqnarray*} g(x)&=&\int_{-\infty}^\infty f(x,y)dy \\ &=&\int_0^1 \frac{2}{3}(x+2y)dy \\ &=&\frac{2}{3} \left[xy+y^2\right]_{y=0}^{y=1} \\ &=&\frac{2}{3}[x+1]-\frac{2}{3}[0+0] \\ &=&\frac{2}{3}(x+1) \end{eqnarray*}\]
  • Find the marginal PDF of Y
\[\begin{eqnarray*} h(y)&=&\int_{-\infty}^\infty f(x,y)dx \\ &=&\int_0^1 \frac{2}{3}(x+2y)dx \\ &=&\frac{2}{3} \left[\frac{x^2}{2}+2xy\right]_{x=0}^{x=1} \\ &=&\frac{2}{3}[\frac{1}{2}+2y]-\frac{2}{3}[0+0] \\ &=&\frac{2}{3}(\frac{1}{2}+2y) \end{eqnarray*}\]
  • Find $P(X \le 1/2, Y \le 1/2)$
\[P(X \le 1/2, Y \le 1/2)= \int_0^{1/2} \int_0^{1/2} \frac{2}{3}(x+2y)dx\ dy\] \[\begin{eqnarray*} \int_0^{1/2} \frac{2}{3}(x+2y)dx &=& \frac{2}{3} \left[\frac{x^2}{2}+2xy\right]_{x=0}^{x=1/2} \\ &=& \frac{2}{3} [\frac{0.5^2}{2}+y]-[0+0] \\ &=& (\frac{1}{12}+\frac{2y}{23}) \end{eqnarray*}\] \[\begin{eqnarray*} \int_0^{1/2}(\frac{1}{12}+\frac{2y}{23})dy &=&\left[\frac{y}{12}+\frac{2y^2}{6}\right]_{x=0}^{x=1/2} \\ &=&\frac{1}{24}+\frac{2}{24} \\ &=&\frac{1}{8} \\ \end{eqnarray*}\]

Source

Joint Distributions for Continuous Variables - Worked Example