Method Of Moments

 

Introduction to method of moments, generalized method of moments(GMM) and method of simulated moments (MSM)

Basic

Maximum likelihood is one way to get a point estimate, another way to get point estimate is to use the method of moments.

  • Moment
    • $E(X)$: the first moment
    • $E(X^2)$: the second moment
    • $E(X^k)$: the $k^{th}$ moment of a random variable
  • Estimate some mean using the method of moment:
    • Estimate for the first moment $E(X)$: $\frac{\sum X_i}{n}$
    • Estimate of $k^{th}$ moment $E(X^k)$: take a random sample of size $n$, then $\frac{\sum_{i=1}^n X_i^k}{n}$

Example

  • A random sample $X_1 \cdots, X_n$
    • $\mu=E(X)$
    • $\sigma^2=E(X-E[x])^2$ or $E(X^2)-\mu^2$
  • Method of moments estimator of $\mu$: $\hat{\mu}=\frac{\sum_{i=1}^n X_i}{n}$

  • Method of moments estimator of $E(X^2)$: $\frac{\sum_{i=1}^n X_i^2}{n}$

  • Method of moments estimator of $\sigma^2$: $\hat{\sigma^2}=\frac{\sum_{i=1}^n X_i^2}{n}- \left[\frac{\sum_{i=1}^n X_i}{n} \right]^2$

Method Of Moments

To do